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y=eBx (Acos!Sx+Bsin!Sx) +e-Bx ( CcosEx+Dsin!Sx) Eqn. 2.5 

where: 

iS= ·~ K (in. -1) 
4Eiz 

K = modulus of foundation (psi) 
EI,= flexural rigidity of the beam (lb-in'). 

The constants A, B, C and D can be found by applying the 
appropriate boundary conditions. Once these constants are 
determined, the equation for deflection along the length of the 
beam can be established. Furthermore, by differentiating the 
deflection equation successively, one can find the distribution of 
bending moment, shear force and pressure along the beam. These 
equations are of sinusoidal form with rapidly decreasing amplitude 
along the length of the dowel. 

For the analysis of a pavement dowel, the problem can be 
idealized as a finite beam resting on an elastic foundation as 
shown in Figure 2.6 where L is the embedded length of the dowel on 
one side of the joint. The effect of the action of forces, applied 
at one end of the beam, on the deflection at the other end depends 
on the magnitude of the quantity B times the length, L. This can 
be observed from the solution of the finite beam problem. Beyond 
a certain value of BL, a force acting at one end of the beam has 
only a negligible effect at the other end in which case, one can 
consider the beam to be an infinitely long beam. In such cases, 
the dowel-concrete system may be idealized as a semi-infinite beam 
resting on an elastic foundation with one of its ends being at the 
origin and the other at infinity. Applying the boundary conditions 
with respect to the forces acting at the origin and forcing the 
deflection and bending moment to be zero at infinity, one can 
obtain the solution for the semi-infinite case as follows: 

Eqn. 2.6 

where: 
P, = force (shear transferred by the dowel) (lb) 
M0 =moment acting at the end held at the origin (lb-in). 

When the pavement dowel is idealized as a semi-infinite beam, 
the solution may result in residual bending moment and shear force 
at the end of the dowel. However, these values may approach zero 
as the magnitude of SL increases. Timoshenko presents a general 
classification of finite beams as follows: 
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Figure 2.6. Finite beam idealization of dowel concrete system 
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short beams: BL < 0.6 
beams of medium length: 
long beams: BL > 5 

0.6 < BL < 5 

Beams of group (i) can be assumed to be very rigid and the 
deflection due to bending may be entirely neglected. Practical 
cases of pavement dowels fall under either group (ii) or (iii). 
The characterizing parameter of beams in group (ii) is that a force 
acting at one end of the beam produces a considerable effect on the 
other end and hence such beams must be treated as beams of finite 
length. The beams of group (iii) can be treated as beams of 
infinite length. 

Thus, for cases where BL < 5, the dowel should be treated as 
a beam of finite length and the exact solution to the finite beam 
problem should be sought by applying the actual boundary conditions 
at the ends of the dowel to the general solution (Equation 2.5) for 
beams on elastic foundation. The solution of a finite beam problem 
is explained later in Section 2.3.2. 

2.2.2. Analvsis based on Friberg's theoretical llOdel 

Friberg [18] adopted Timoshenko's solution given by Equation 
2.6 for a semi-infinite beam resting on an elastic foundation as 
the basis for the analysis of pavement dowels. Substituting x=O in 
Equation 2.6, the deflection of the dowel, y0 at the face of the 
joint can be obtained as in Equation 2.7. 

where: 

JS=~ k 0 d 
4Eiz 

k0 = modulus of dowel support (pci) 
d =diameter of the dowel (in.) 

Eqn. 2.7 

The modulus of dowel support, k0 is the reaction per unit area 
causing a unit deflection. Since Timoshenko's modulus of 
foundation is the reaction per unit length causing a unit 
deflection, we have 

Eqn. 2.8 

and therefore the expressions for B as suggested by Timoshenko and 
Friberg are essentially the same. The bearing pressure on the 
concrete at the face of the joint is obtained as shown in Equation 
2.9. 

l 
!' 

.1 

I 

r 



16 

Eqn. 2.9 

By successive differentiation of Equation 2.6, expressions for 
the bending moment and shear force can be obtained as given in 
Equations 2.10 and 2.11. 

d2 e-Bx 
M=-Eiz---1:'.'.=--

13 
[Pcsin!Sx-ISM

0
(sin!Sx+cos!Sx)] 

dx2 
Eqn. 2 .10 

Eqn. 2.11 

By equating the shear force to zero, the point of zero shear 
can be found from Equation 2.11. Evaluation of the bending moment 
at this point using Equation 2.10 yields the maximum bending moment 
in the dowel as shown in Equation 2.12. 

p e-Bxm 
~x=- t yl+(l+!Sz) 2 

213 
Eqn. 2.12 

where: 
x. is the point of maximum bending moment on the dowel (in.) 
x.= cot (l+Bz)/B 

Equations 2. 9 and 2 .12 can be directly used for stress 
computations which are based on the solution for a semi-infinite 
beam. This may not always be a good approximation. The analysis 
may give an even poorer approximation for a fiber composite dowel 
system than for a steel dowel system because the low value of K for 
fiber composite dowels makes the magnitude of BL smaller. Based on 
the discussion of. BL presented in Section 2.2.1., Friberg's 
analysis can be adopted only when BL is greater than 5. 

2.2.3. Analysis based on Bradbury's theoretical model 

Bradbury's [23] theoretical model also is based on 
Timoshenko's analysis. While attempting to analyze the pavement 
dowel, Bradbury modified Timoshenko's pressure diagram as shown in 
Figure 2.7a where X is the length of the dowel bar on one side of 
the joint covered by the first positive and negative pressure 
cycles. As is evident from Figure 2. 7a, Bradbury considered 
modifying the pressure diagram corresponding to an infinitely long 
beam. The reasons for modification, as explained by Bradbury are: 
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(i) Pavement dowel is finite, rather than, infinite in 
length. 

(ii) The modulus of foundation for a dowel is not readily 
available for evaluation because the slab itself is 
being supported by a yielding material, i.e. subgrade. 

(iii) The modified pressure diagram, which is in the form of 
a series of linear loads as shown in Figure 2.7b 
permits the analysis to be carried out by statics. 

Assuming that X is approximately equal to half the dowel bar 
length, and applying equilibrium conditions, the peak values in 
Figure 2.7b can be obtained as follows: 

f : _2_s_P..;:;c_( e_+_1_._s_z_) 
c 2e2 d 

where: 
t =total length of the dowel bar= 2L + z (in.) 
d =diameter of the dowel (in.). 

Eqn. 2.13 

Eqn. 2.14 

The values of p and f 0 

distribution along the dowel. 
ordinary beam loaded with linear 
for the required stresses. 

completely define the pressure 
This reduces the problem to an 

leads which can be easily analyzed 

Bradbury's analysis is independent of K which is an important 
variable in the analysis of dowels. Modification of the pressure 
diagram is not necessary to yield a simplified model because even 
the accurate solution for the finite beam problem involves solving 
four simultaneous equations (as will be shown later in Section 
2.3.2). Solving these four simultaneous equations is very 
practical in light of the wide availability of powerful computers. 

2.2.4. Analysis based on Westergaard's tbeory 

Westergaard [ 19) investigated three cases of loading for 
computing the critical stresses in concrete pavements: (i) corner 
load, (ii) interior load, and (iii) edge load. He presented the 
equation for maxi:mu:m tensile stress (at the bottom of the slab 
directly under the applied load) for the edge loading case as given 
in Equation 2.15, which for µ=0.15 is given by Equation 2.16. 
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P Eh 3 
o .=o. 529 (l+O. 54µ) - [log10 (--) -o. 71] 

h 2 kb 4 

o .=o. 572...£. [4log10 ( Qb,) +o. 359] 
h2 

where: 
b=yl.6a 2 +h 2 -0.625h(in.) 

Eqn. 2 .15 

Eqn. 2.16 

a= radius of circular area of contact of load P (in.) 
o. = free edge stress, as given by Equation 2.16 (psi) 

This expression gives the maximum stress in the slab for the 
case of free edge loading. The effect of introducing dowels at an 
edge of a pavement joint is to reduce the bending stress in the 
concrete. By furthering his theory, Westergaard [ 16] presented the 
first rational procedure for computing the stresses for a doweled 
joint. 

Assuming that the deflection of loaded and unloaded slabs at 
a joint is symmetric about the line at the applied load 
perpendicular to the edge, the force transferred by any dowel, as 
a fraction of the applied edge load, can be expressed in terms of 
the deflections of the slab. Deflections and moments caused by an 
edge load can be directly obtained from the diagrams developed by 
Westergaard (19]. Once the dowel reactions are computed from the 
slab deflections, bending moments produced by dowel reactions can 
be determined from the moment coefficient diagram. These moments 
can be used to determine the bending stresses. The resultant 
tensile stress produced at the bottom of the slab directly under 
the load is given by [16] Equation 2.17. 

Eqn. 2.17 

where: 
ad = contribution from dowel reactions (psi) 

Westergaard's analysis does not pay attention to the stiffness 
of the dowel relative to the concrete. Also, bending stress in the 
dowel can not be found by Westergaard's method. The analysis does 
not account for the dowel parameters except that the dowel is 
assumed to be perfectly rigid, which is not the case. 

2.3. Selected Analytical Model for ISU work 

2.3.1. Description 

The pavement dowel has been idealized as a beam of finite 
length encased in an elastic medium. The analytical model used for 

l 
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the research program was based on Timoshenko's theory for beams on 
elastic foundations. The modulus of dowel support, k 0 has been 
selected as the key variable defining the dowel-concrete system 
instead of the modulus of foundation, K, as suggested by 
Timoshenko. Consequently, Friberg's expression for B has been used 
throughout the analysis. The values of k0 for steel and FC dowels 
were established through experimentation. The analysis was carried 
out as explained in the following section. 

2.3.2. Solution of finite beam problem 

The solution of a finite beam resting on an elastic foundation 
can be obtained by considering Timoshenko's general solution as 
given by Equation 2.5, and then by applying the appropriate 
boundary conditions. Successive differentiation of Equation 2.5 
yields the following differentials shown in Equations 2. 18 and 
2.19. 

d2. 
--2'.: =IS 2 e 8 x [ -2Asin.Bx+2Bcos/Sx] + IS 2 e-Ex [2Csin/Sx-2Dcos.Bx] 
cJx2 . 

d
3
y =2E 3 eEx[-A(cos/Sx+sin.Bx) +B(cos.Bx-sin.Bx) l 

cJx3 

+2/S 3 e-Bx[c(cos.Bx-sin.Bx) +D(cos.Bx+sin.Bx) l 

Eqn. 2.18 

Eqn. 2.19 

Referring back to Figure 2.6, the boundary conditions can be 
expressed as listed below: 

( i) at x=O, M = EI, d 2 y/dx 2 = - Mo 

(ii) at x=O, v = -EI, d 3y/dx• = - P. 

(iii) at x=L, M = EI, d 2 y/dx 2 = 0 

(iv) at x=L, v = -EI, d 3y/dx• = o. 

By applying the boundary conditions (i) and (iii) to Equation 2.18, 
and the boundary conditions (ii) and (iv) to Equation 2.19, a set 
of four simultaneous equations can be formed. These equations can 
be solved for the unknowns A, B, C and D. The equations when 
formed, can be written as: 
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aH A + a,2 B + a,, c + a,, D b, 

a21 A + a22 B + a2, c + a2, D = b2 

a" A + a,2 B + a,, c + a,, D b, 

a4i A + a42 B + a.3 c + a .. D = b,. 
Expressing in matrix form, 

[a] {A) = {b) 

or {A) = [a]-1{b). 

Thus, by inverting the matrix [a] and multiplying with {b), 
the unknown set {A) can be determined. With the values of A, B, c 
and D, one can establish the equation for deflection along the 
dowel. The distribution of bending moment and shear force along the 
length of the dowel can be derived by differentiating the equation 
for deflection (or by using Equations 2.18 and 2.19). 

2.4. Importance of Experimentation 

The modulus of dowel support is a very important term in the 
analysis of pavement dowels. The value of k0 can not be easily 
established theoretically. There is no information available as to 
what value of k0 is to be used in the analysis of specific 
situations. so, the value of k0 is established through 
experimentation. The purpose of conducting experiments is to find 
the maximum deflection, y0 , of the dowel relative to concrete at 
the face of the joint. The value of y0 will be used to read the 
value of k0 from a graph relating k0 and y0 • The graph can be 
theoretically developed by determining a relationship between k0 

and y0 by substituting x=O in deflection equation. 

I 
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3.0. Experimental Investigation 

3.1. Introduction 

The investigation described herein (Section 3.0.) was 
conducted at ISU in coordination with the Iowa Department of 
Transportation (IDOT). This report covers Objective 1 given in 
Section 1.3.1, which focused on shear behavior and strength of FC 
dowel bars without aging. 

This experimental investigation discusses the different shear 
test methods that are available to determine the shear capacity of 
the dowel bars (Section 3.5.1.), and explains the shear test method 
chosen for ISU work. The experimental results are discussed in 
Section 3.6 with load-deflection curves given in Appendix A. 

3.2. Obiective 

The objective (for Part 1 of the final report) focused on a 
direct comparison between fiber composite (FC) dowel bars and steel 
dowel bars. Dowel-specimen types included FC dowels from Supplier 
A and steel dowels. The objective of the dowel testing portion was 
to determine the suitability of substituting FC dowel bars for 
steel pavement dowels, which are currently used in practice. 

3.3. Scope 

The scope of the research included experimental testing of 10-
dowel specimens (including five specimens, containing FC dowels 
from Supplier A, and five-steel dowel specimens) subjected to 
direct shear. A second FC dowel bar, from Supplier B, was tested 
and determined as inappropriate for use in this research program. 
Supplier B FC dowel bars contained surface deformations resulting 
in considerable bond between the dowel and the concrete (the dowel 
must not bond to the concrete, which would inhibit expansion and 
contraction of the pavement slab). Also, Supplier B FC dowel bars 
had a significantly lower load carrying capacity. The test matrix 
for the 10 dowel-shear specimens was developed by ISU in 
coordination with the IDOT and can be found in Table 3.1. Table 
3.1 shows the dowel type( the supplier designation and the number 
of test specimens for the dowel-shear tests. 
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Table 3.1. Test matrix 

Number of Test Specimens 

Dowel Type Supplier Unaged 
(air) 

FC A 5 

Steel 0 5 

3.4. Materials and Specimens 

Dowel-shear specimens were constructed as shown in Figure 3. 1. 
The specimens used in the research program for the dowel-shear 
tests consisted of a 10- by 10- by 24-inch concrete member with a 
pavement dowel centered in the concrete. The 10-inch-thick 
dimension was chosen to represent a commonly used 10-inch-thick 
pavement. To eliminate problems with handling and testing of the 
specimens, minimum sizes were used (ie., specimens with 10-inch 
width). A gap in the specimen (see Figure 3.1) helped insure that 
no force was transferred by aggregate interlock or interface 
friction, and that all of the force was transferred through the 
dowel being tested. To keep the specimen close to field conditions 
a gap of approximately one-eighth inch was provided. 

The specimens were constructed with steel prefabricated forms. 
Three sheet metal pieces were placed at the centerline of each 
dowel specimen to create the gap. The concrete used was the Iowa 
Department of Transportation's M-4 mix with superplasticizer. The 
mix was provided by a local manufacturer. The average strength of 
the concrete was 8000 psi and was determined based on testing 
standard cylinders. Table 3.2 lists the properties of the FC and 
steel dowels used in this investigation. 

Table 3.2. FC and steel properties 

Dowel Measured Area Apparent Modulus 
Dowel Supplier Length Diameter ( in2

) of Elasticity 
Type (in.) (in.) (psi) 

FC A 18 1.250 1.227 2. 80x10•• 

Steel 0 18 1.500 1.767 28. ox10••• 

supplied by manufacturer 
Value was determined through flexural testing 

' i 
r I 

i 
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Figure 3.1. Dowel specimens 
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3.5. Testing Procedure 

The dowel-shear testing procedure was developed to determine 
the shear capacity of FC and steel dowel bars embedded in concrete 
(refer to Figures 3 .1). A shear test method was selected to 
simulate the actual dowel-shear behavior in a pavement joint. 

Due to the size and shape of the test specimens (see Figure 
1), several different shear test methods were investigated before 
choosing the more appropriate method for testing the dowel 
specimens. Section 3.5.1 describes various shear test methods and 
their suitability for use in this research project. 

3.5.1. Shear test method.s 

3.5.1.1. Short beam test 

The short beam shear test involves a short beam specimen 
(short beam with 4: 1 span to thickness ratio) supported at two 
points with a concentrated load applied at the center of the 
specimen [27]. Figure 3.2 illustrates the short beam shear test 
geometry. The shear stress distribution across the cross section 
can be determined with the elementary beam theory equation (this 
does not apply to circular sections) as shown in Equation 3.1. 

Eqn. 3.1 

where: 

r = Shear stress 
v = Shear force on a cross section(lbs) 
Q = First moment of area (in3

) 

t - Width of the cross section (in.) 
r. = Flexural moment of inertia (in•) 

Because of the simplicity of the test setup, the short beam 
test has become a popular test method for determining the shear 
strength of fibercomposites [28]. The short beam test, when used 
to test unidirectional fibercomposite materials, usually does not 
yield interlaminar shear failures (27]. Often the failures of the 
specimens are associated with stress concentrations caused by the 
combination of the concentrated load at the center and the 
concentrated reaction points at the ends of the short beam. These 
three point loads each cause stress concentrations around them, and 
the combination of three point loads in one very short beam causes 
significant stress concentration effects throughout the entire 
beam, questioning the validity of the test [27]. Many researchers 
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ip 
6.35 mm dia. dowel 
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L 

Horizontal Shear Load Diagram 
(Flat Laminate) 

American Society for Testing and Materials (ASTM) 
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Reinforcements 
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Graphite Fibers 
Carbon Fibers 
Steel Fibers 

Span/Thickness 

4 
4 
4 
4 

Length/Thickness 

7 
6 
6 
6 

Figure 3.2. Short beam shear test geometry and 
specifications (ASTM) (29] 



27 

have studied the stress distributions in an anisotropic short beam 
specimen using a finite element analysis technique [ 27]. The 
results from the finite element analysis, verified with 
photomicrographs of experimental tests, show that the stress 
concentrations (with resulting maximum stresses on the top fibers 
up to three times the maximum shear stress on the centerline of the 
specimen) often can affect the results of the short beam test and 
that inaccurate results commonly occur while using this test 
procedure [27]. 

According to Adams, Thomas, and Rodney the "beam must be 
relatively short to minimize the possibility of failure in the 
tensile or compressive mode. Before a shear failure at the neutral 
axis occurs, the applied concentrated loads become relatively high, 
complicating the state of stress and introducing the possibility of 
bearing or crushing failure at the loading points. Thus, a very 
complex and difficult-to-define state of stress actually exists in 
the specimen, making the correlation of an applied load to an 
actual shear strength questionable" [30 p.340]. These findings, as 
well as the results from the photomicrographs for the 
fibercomposite specimens, conclude that the short beam test is not 
an accurate measure of the shear strength of fibercomposite 
materials because of the stress concentrations that are occurring 
throughout the beam specimen. 

3.5.1.2. Torsion of a solid round bar 

The torsion-test of a solid round bar involves a round bar 
with a torque applied to one end while the other end is torsionally 
supported. Figure 3.3 illustrates the torsion of a solid round 
bar. A simple equation can be used to determine the shear stress 
occurring on the surface of the round bar as given in Equation 3.2. 

where: 

2T 
't (maximum)= n;Rl 

T =Torque applied (in-lb) 
R =Radius of bar (in.) 

Eqn. 3.2 

This test can determine the stress occurring in the rod up to 
the proportional limit if the fibers are parallel to the axis of 
the specimen [30]. Unfortunately, for this research project, this 
test method does not accurately model the transverse loading 
situation occurring in the pavement dowel bar. Additionally, the 
use of this test would require a separate testing frame and the 
problems of developing a method to grip the dowel bars would have 
to be addressed. For these reasons, torsion of a solid rod shear 

I 
I 
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Equal and opposite 
torques 

Rotation angle for----' 
applied torque 

Direction of fibers in the bar are parallel 
------' 

to the long axis of the specimen 

Figure 3.3. Illustration of the torsion of a solid round bar 
shear test 
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test was not developed for this research program. 

3.5.1.3. Iosipescu shear test method 

The Iosipescu shear test achieves a state of pure shear 
loading at the centerline of the specimen by its geometry [31]. 
The load is applied in such a way that the shear is constant in the 
region at the centerline of the dowel and the moment is very small, 
in fact is zero, at the centerline of the specimen [31,32]. Figure 
3. 4 illustrates the force, shear and moment diagrams for the 
Iosipescu shear test method. 

The controlling idea behind the test is that "each end of the 
test specimen is restrained from rotating by the loading fixture 
and simultaneously undergoes shear loading" [31:p.106] (see Figure 
3. 4) • In addition to the development of this test procedure, 
Iosipescu also discovered "that by cutting 90-degree notches on 
each edge of the specimen, the shear stress distribution within the 
test specimen could be altered. By cutting these notches, the 
shear stress distribution can be changed from the parabolic shear 
stress distribution present in constant cross-section beams to 
constant shear stress distribution in the region between the two 
notches" [3l:p.107]. The notched Iosipescu specimen is shown in 
Figure 3. 5 .• 

The Iosipescu shear test method was selected for the Iowa 
State research program for three main reasons: 

1) The loading resulting from the test procedure is 
nearly identical to the loading situation that a 
pavement dowel would experience in the field. 

2) If the shear stress reaches the limiting value, the 
specimen will fail in shear. Shear tests that do 
not result in the shear failure of the specimen are 
not an accurate measure of the material's shear 
strength. 

3) The loading situation is such that large stress 
concentrations resulting from the application of 
the load over a relatively large area are avoided. 

To utilize the Iosipescu shear test method, the test frame 
used for this research project was constructed based on the smaller 
Iosipescu test frames developed by Adams at the University of 
Wyoming [31]. The test fixture used by Adams was made for very 
small test specimens. This research project required a much larger 
frame. However, the geometry of the loading and support systems 
are the same. Figure 3.4 shows a schematic of the frame used by 
Adams at the University of Wyoming. Figure 3.6 shows a schematic 
of the frame developed in this research project for testing the 
relatively large dowel specimens. 
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p Loading fixture 

p Test Specimen 

Figure 3.4. Schematic of Adam's Iosipescu test 
frame [31] 
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The dowel-shear specimen was held securely by tension rods 
(refer to Figure 3. 6) to minimize bending and rotation of the 
assembly during testing. One half of the specimen (designated by 
Side 1 in Figure 3.6) was anchored to the fixed end of the frame 
while the force (applied by a hydraulic ram) was transferred 
through the other side (designated by Side 2 in Figure 3. 6) 
resulting in direct shear of the dowel bar. The gap (refer to 
Figure 3.6), as explained early in this report, helped transfer the 
force through the dowel bar from one side of the specimen to the 
other without aggregate interlock or interface friction. 

The graphs in Appendix A, for the dowel-shear specimens, 
reflect the differential deflection between Sides 1 and 2 ( see 
Figures 3.6 and 3.7) versus load. 

Differential deflection 
between Sides 1 and 2 

A....------- (large deflections 
shown for clarity) 

Fiqure 3.7. Differential deflection in dowel speciaen 

3.6. Results 

The results of the testing program are presented in this 
section based upon the performance of individual or a series of 
specimens. A description of the specimen identification system 
used for each test series may be found in Figure 3. a. A 
representative curve of the Figures in Appendix A is given in 
Figure 3.9. and is discussed in the text below. 

The graphs given in Appendix A are shown by a representative 
curve in Figure 3.9. This curve shows three regions (A,B and C) 
which are typical of all tests in this series. Region A (see 
Figure 3. 9.) shows the elastic portion of the curve and is 
characterized by bending of the dowel. Bending of the dowel 
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-I LAging Solution: 
(U=Unaged) 

~~~~~~~~~~,specimen Designation: 
(D=Dowel) 

Specimen Type: 
'--~~~~~~~~~~~~~-(FC=fibercomposite, 

S=Steel) 

Supplier's 
'--~~~~~~~~~~~~~~~~~~~Identification 

(O=None Used,A) 

Figure 3.8. Specimen identification system 

continued to occur until cracking of the concrete. This concrete 
cracking marked the beginning of Region B (see Figure 3.9.) where 
the dowel specimen continued to carry load (and in some cases 
increasing load). The dowel specimen continued to carry load due 
to the clamping force applied by the testing frame (Refer to Figure 
3.6). Final failure of the concrete resulted in substantial loss 
of load-carrying capacity as shown in Region C (see Figure 3.9). 

The data resulting from the test matrix is represented in 
graphical form, and can be found in Appendix A, Figures Al and A2. 
The graphs show a load versus deflection curve for five different 
specimens in each test series. Series 1 and 2 represent testing of 
FC dowel specimens and steel dowel specimens, respectively. 

The Reasonably Expected Elastic Load (REEL) and associated 
deflections are given in Table 3.3 and correspond to REEL values 
taken from the graph in Appendix A. The REEL values indicate the 
end of the elastic region (initial straight line portion of the 
graph) and the start of the inelastic region. As discussed in 
Figure 3. 9, the REEL load marked the beginning of the concrete 
cracking. This concrete failure was restrained by the clamping 
forces applied by the testing frame. The peak loads (PL) will be 
therefore taken as the REEL loads given in Table 3.3. 

These combined PL and REEL loads can be used to obtain the 
shear stress in the dowel bars. The maximum shear stress for the 
Iosipescu shear test (for unnotched specimens) is determined 
through the use of the elementary beam theory equation: 

v 
-c tmaximum> = T 

d 
Eqn. 3.3 
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The average stiffness associated with the elastic portion of 
each load-deflection curve is given in Table 3.4. The stiffness 
was determined by calculating the slope of the line between 20 and 
80 percent of REEL. 

Table 3.3. Dowel REEL and deflection results 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg. 
Assembly REEL REEL REEL REEL REEL REEL 

(lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 
(in.) (in.) (in.) (in.) (in.) (in.) 

A-Fc-o-u 17067 14894 12005 12664 12613 13849 
(Fig Al) 0.201 0.186 0.139 0.128 0.133 0.157 

o-s-o-u 17810 18982 18059 18402 17998 18250 
(Fig A2) 0.012 0.015 0.016 0.015 0.017 0.015 

Table 3.4. Dowel specimen stiffness 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg. 
Assembly Stiff. Stiff. Stiff. Stiff. Stiff. Stiff. 

* * * * * * 
A-Fc-o-u 88.3 79.0 87.0 99.4 95.3 89.8 

o-s-o-u 1307 1410 1250 1281 1400 1330 

• Units given in kips/in. 
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4.0. Analysis of Experimental Results 

4.1. Dowel Deflection at the Face of the Joint 

If A is the total relative deflection of the two slabs at a 
joint and ti is the shear deflection of that part of the dowel 
contained in the joint opening, the deflection of the dowel 
relative to concrete in one of the slabs is given by 

The total relative deflection, A is measured experimentally 
whereas the shear deflection, ti is obtained from the following 
express ion, [ 3 3] 

where: 
F = form factor, equal to 10/9 for solid circular section 
P. =dowel shear (lbs) 
L. =shear span of the dowel within the joint opening (in.) 
A. = area of dowel ( in2

) 

G= E 
. 2 (1+µ) 

shear modulus (psi) 

This expression for shear modulus, G, is not valid for 
fibercomposite materials because of the anisotropic material 
behavior. But since the shear deflection is very small when 
compared to the relative deflection, large variation in the value 
G does not have considerable effect on the results of analysis. 
Hence, the above classical expression for G was used in the current 
work. More scientific procedure for establishing the value of 
shear modulus. for FC material is presently being studied. 

Table 4.1 lists the total relative deflection, shear 
deflection and deflection of the dowel relative to the concrete 
under a dowel shear of 10,000 lb for various 1.5-inch steel dowel 
specimens. Table 4.2 gives the corresponding values for 1.25-inch 
FC dowel specimens. A modulus of elasticity of 6, 000 ksi and 
poisson's ratio of 0.25 was used in this regard. The value of the 
dowel shear used to calculate the values of y 0 is arbitrary, but 
the same value of P. should be used while graphing the relationship 
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between k 0 and y 0 • 

Table 4.1. Experimental deflection of 1.5 in. dia. steel dowel 
specimens under 10,000 lb shear 

Dowel 
Total relative Shear deflection at 

Specimen No. deflection, deflection, the face of 
.1(in.) 0 (in. ) the joint, 

Yo (in.) 

Sl 0.00765 0.0000704 0.00379 

S2 0.00709 0.0000704 0.00351 

S3 0.00800 0.0000704 0.00396 

S4 0.00781 0.0000704 0.00387 

S5 0.00714 0.0000704 0.00353 

Average value of Yo = 0.00373 

Table 4.2. Experimental deflection of 1.25 in. dia. FC dowel 
specimens under 10,000 lb shear 

Dowel 
Total relative Shear deflection at 

Specimen No. deflection, deflection, the face of 
.1 (in. ) o (in. ) the joint, 

Y0 (in.) 

Fl 0.116 0.0004714 0.0578 

F2 0.123 0.0004714 0.0613 

F3 0.114 0.0004714 0.0568 

F4 0.106 0.0004714 0.0528 

F5 0.105 0.0004714 0.0523 

Average value of Yo = 0.0562 

4.2. Modulus of Dowel Support 

Separate k 0 versus y 0 graphs were developed for steel and FC 
dowel systems at a dowel shear of 10,000 lb. The development of 
these graphs was based on the finite beam idealization of the 
dowel-concrete system. The process of developing these graphs 
involved establishing the deflection equation for a particular 
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value of k0 , substituting x=O in the equation for deflection to get 
the value of y0 , and repeating the same for various values of k

0
• 

Graphs relating k0 and Y0 are presented in Figures 4. la and 4. lb for 
1.5-inch diameter steel and 1.25-inch diameter FC dowels, 
respectively. 

The specific values of modulus of dowel support corresponding 
to the experimental values of y0 were obtained from these graphs. 
The values were checked numerically, and tabulated in Table 4.3 for 
1.5-inch diameter steel and 1.25-inch diameter FC dowels. 

4.3. Deflection Equation 

The establishment of deflection equations for the two-dowel 
systems was based on the solution of the finite beam problem 
presented in Section 2.3.2. The solution was worked out for an 
assumed dowel shear, P. of 10,000 lb. The moment in the dowel at 
the face of the joint, M0 was calculated as : 

1 
Ptz 10000 ( 8 ) 

M =---=- - 625lb-in. 
0 2 2 

Eqn. 4.3 

Experimental k0 values were read from Table 4. 3, and the 
length of the finite beam, L was taken as 9" (length of the dowel 
on one side of the joint). 

Table 4.4 presents the solution of the finite beam problem in 
terms of the constants A, B, C and D defining the deflection 
equations for steel and FC dowel systems. Using these constants, 
the equation for deflection along the dowel was established for 
steel and FC dowels. Figures 4.2a and 4.3a show the corresponding 
deflection diagrams. 

4.4. Bending 'Mnunt. Shear Force and Pressure 

The distribution of bending moment and shear force along the 
length of the dowel were obtained from the second and third 
differentials of the deflection equation given by Equations 2.18 
and 2 .19. Differentiation of Equation 2 .19 yields the fourth 
differential of the deflection equation from which the equation for 
pressure along the length of the dowel was obtained. 

With the values of A, B, C and D taken from Table 4.4, the 
distributions of bending moment, shear force and pressure along the 
dowel were obtained, and the same were graphed and presented in 
Figures 4.2 and 4.3. 
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Table 4.3. Experimental values of k,, 

Specimen Average value, Value of 
Yo (in.) ko (pci) 

1.5 11 steel dowel 0.00373 2139000 

1.25" FC dowel 0.0562 148180 

Table 4.4. Results of finite beam analysis problem 

Specimen A B c 
1. 5" steel dowel 2.064E-07 -l.79E-07 3.731E-03 

1.25" FC dowel 4.196E-06 -l.28E-05 5.613E-02 

4.5. Critical stresses 

4.5.1. 1.5" steel dowel specimen 

Bearing stress in concrete, 

a=k.,Y0 =2139000*0.00373=7978psi 

Shearing stress in dowel, 

p 
1:= t = 

1td2 

4 

10000 
1C(l.5) 

4 

=5656psi 

Bending stress in dowel, 

f=~= s 
6000 ==l!no1psi 

1C(l.5)3 
32 

D 

-1. 30E-04 

-l.72E-03 

Eqn. 4.4 

Eqn. 4.5 

Eqn. 4.6 
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4.5.2. 1.25" FC dowel specimen 

Bearing stress in concrete, 

a=k,,Y0 =148180*0.0562=8328psi 

Shearing stress in dowel, 

lOOOO =8145psi 
lt(l.25) 2 

4 

Bending stress in dowel, 

Specimen 

1.5" steel dowel 

1. 25" FC dowel 

f= ~= 7 ooo =36492psi 
s lt(l.25) 3 

4 

Table 4.5. Critical stresses 

a (psi) r (psi) 

7978 5656 

8328 8145 

Eqn. 4.7 

Eqn. 4.8 

Eqn. 4.9 

f (psi) 

18101 

36492 
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5.0. Conclusions 

As stated previously, this is Part 1 of a two-part final 
report. Part 1 covers development of the experimentation 
procedures and the theory for analyzing effects of accelerated 
aging on the shear behavior and strength of fibercomposite (FC) 
dowels and on the bond behavior of FC reinforcing bars. A direct 
strength comparison of the steel dowels to the FC bars is contained 
in both Parts 1 and 2. 

Different theoretical models for the analysis of dowels were 
investigated and developed. Timoshenko's analysis was concluded to 
be the most appropriate method. A solution to the finite beam 
problem, as opposed to the conventional semi-infinite solution was 
considered and presented in Section 2. 3. Figures 5 .1 and 5. 2 
demonstrate a comparison between the results obtained from the 
analysis using the developed theoretical model and those results of 
analysis using the semi-infinite idealization. 

The experimental investigation yielded results establishing 
maximum strengths, behavioral characteristics and failure modes. 
The maximum strengths were based upon a reasonably expected elastic 
load (REEL). The average value of REEL observed for the FC dowel 
specimens was 13,849 lb. compared with a typical required maximum 
service load of 4500 lb. The maximum bending moment in the FC 
dowel was observed to be 7000 lb-in resulting in a fiber stress 
value of 56,506 psi which is less than the ultimate coupon flexural 
stress of 100,000 psi [13]. 

Further testing is recommended for establishing the values of 
modulus of dowel support for various ranges of concrete compressive 
strength and dowel diameters. These results could be used to 
generalize the analysis for accommodation of all types of dowel 
systems, including possible non-circular dowel sizes. 
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